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Statistical mechanical description of the parking-lot model for vibrated granular materials

G. Tarjus and P. Viot
Laboratoire de Physique The´orique des Liquides, Universite´ Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France

~Received 7 July 2003; published 30 January 2004!

We apply the statistical mechanical approach proposed by Edwards and co-workers to the parking-lot model,
a model that reproduces the main features of the phenomenology of vibrated granular materials. We first build
the compactivity-based measure for the case of vanishingly small tapping strength and then generalize the
approach to finite tapping strengths by introducing a ‘‘thermodynamic’’ parameter, the available volume for
particle insertion, in addition to the particle density. This description is able to take into account the various
memory effects observed in vibrated granular media. Although not exact, the approach gives a good description
of the behavior of the parking-lot model in the regime of slow compaction.
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I. INTRODUCTION

Granular media are athermal, out-of-equilibrium syste
which would be useful to describe within a statistical m
chanical framework. A given macrostate of such a syst
characterized by a fixed density of grains~consider for sim-
plicity a packing of monodisperse spherical particles! is very
likely to be associated with an exponentially large numbe
microstates or particle configurations. How the packing w
prepared~by pouring, shaking, shearing, etc.! may influence
its properties and change the way the associated particle
figurations are sampled when repeating over the same ex
mental protocol. However, the simplest hypothesis, put
ward by Edwards and his co-workers@1–4#, is that all
microstates characterized by a given average density
equiprobable. With this ‘‘flat’’~microcanonical! measure, one
can build a statistical mechanical framework in which e
tropy, i.e., the logarithm of the number of microstates, is
relevant thermodynamic potential. This approach has
cently been the focus of an intense research activity, in c
nection with a series of experiments performed on wea
vibrated granular materials@5–9# and with a theoretical de
scription of out-of-equilibrium glassy systems based on
concept of effective temperature@10–14#.

In the past few years, the hypothesis of Edwards and
workers has been tested on many models, virtually all
them being lattice models with some kind of ‘‘tapping’’ k
netics@15–33#. In the absence of experimental tests of th
approach~see, however, Ref.@6#!, such theoretical studie
are expected to better circumscribe the conditions of valid
of the statistical mechanical description.~Presumably, only
‘‘approximate validity’’ can be expected since, aside fro
specific mean-field models@10,14#, such a simplified de-
scription of out-of equilibrium situations in terms of a sma
number of ‘‘thermodynamic’’ parameters is unlikely to b
exact.!

In this paper, we consider a statistical mechanical
proach for the one-dimensional model of random adsorpt
desorption of hard particles@34–36#, also known as the
parking-lot model@6#. This latter is a microscopic, off-lattice
model that mimics many features of the compaction o
vibrated column of grains. Besides a qualitative descript
of the phenomenology of weakly tapped granular me
1063-651X/2004/69~1!/011307~10!/$22.50 69 0113
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@6,7,37–41#, the interest of the model is that exact analytic
results can be derived or, when not possible, very accu
numerical data can be obtained from computer simulatio
In the following section, we briefly introduce the parking-l
model and we discuss its connection to vibrated granu
materials. In Sec. III, we consider the limit of vanishing
small ~but nonzero! tapping intensity; we construct for thi
case a description based on a microcanonical~flat! measure
in which all ‘‘blocked’’ states are considered as equiproba
and we compare the resulting predictions to the exact beh
ior. In the following section, we generalize the study to t
case of a finite tapping intensity: we consider what appe
to be the simplest, yet compatible with known experimen
observations, generalization of the Edwards’ formalism.
nally, we discuss the merits and limitations of the approa

II. THE MODEL AND ITS CONNECTION TO VIBRATED
GRANULAR MATERIALS

The parking-lot model is a one-dimensional rando
adsorption-desorption process of hard rods on a line. H
rods of lengths are deposited at random positions on a li
at ratek1 and are effectively inserted if they do not overla
with predeposited rods; otherwise they are rejected. In a
tion, all deposited particles can desorb, i.e., be ejected f
the line at random with a ratek2 . Time is measured in units
of 1/k1 , length in units ofs, and the model depends on on
control parameterK5k1 /k2 . When no desorption is
present (k250), the model reduces to the purely irreversib
one-dimensional random sequential adsorption~RSA! pro-
cess@42–44#, and all the properties of the system as a fun
tion of time are known exactly@44–46#. In addition, for 1/K
nonstrictly equal to zero, the competition of mechanisms
tween adsorption and desorption allows the system to rea
steady state that is nothing but an equilibrium fluid of ha
rods at constant activity 1/K: there too, all properties are
known exactly.

The densification kinetics of the parking-lot model at co
stantK is described by

]r

]t U
K

5F~ t !2
r

K
, ~1!
©2004 The American Physical Society07-1
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G. TARJUS AND P. VIOT PHYSICAL REVIEW E69, 011307 ~2004!
wherer(t) is the density of hard rods on the line at timet
~recall thats[1) andF(t) is the fraction of the line that is
available at timet for inserting a new particle, i.e., the prob
ability associated with finding an interval free of particles~a
‘‘gap’’ ! of length at least 1. The quantitiesr andF can be
calculated from the one-gap distribution functionG(h,t)
which is the density of gaps of lengthh at time t via a
number of ‘‘sum rules’’:

r~ t !5E
0

`

dh G~h,t !, ~2!

12r~ t !5E
0

`

dh hG~h,t !, ~3!

F~ t !5E
1

`

dh ~h21!G~h,t !. ~4!

The evolution with time of the one-gap distribution functio
can itself be described by a kinetic equation that involv
two-gap distribution functions, and so on@37#. Except for the
two above mentioned limits~RSA whenk250, equilibrium
when t→1`), the infinite hierarchy of coupled equation
cannot be solved analytically and one must resort to appr
mate treatments and computer simulations, as describe
previous papers@37–40#.

First introduced in the context of protein adsorption
liquid-solid interfaces @34–36#, the random adsorption
desorption model has recently been applied to the descrip
of weakly vibrated granular materials@6,7,37–41#. The con-
nection between the parking-lot model and these latte
made by regarding the particles on the line as an ave
layer of grains in the vibrated column. Time measures
number of taps whose effect is to eject particles from
layer; ejection is followed by the arrival at random of pa
ticles in the layer, which mimics the gravity-driven rela
ation step in the experiment. Considering that the main
fluence of the intensity of the tapping is to determine
average number of particles ejected at each tap~this number
being an increasing function of intensity! leads to associate
1/K with the tapping strength. A two-dimensional version
the model with some polydispersity of the particles wou
clearly be more realistic, but one does not expect this
change the qualitative features of the model@43#. A more
serious caveat is the absence of an explicit account of
mechanical stability of the particle packings: stability is on
implicitly described by the fact that the particles are block
on the line between two successive desorption events.

Despite drastic simplification of the situation encounte
in vibrated granular materials, the parking-lot model rep
duces at a qualitative level most of the relevant phenome
ogy: ~i! for large rateK corresponding to weak tapping in
tensity, compaction proceeds very slowly and can
effectively described by an inverse logarithm of tim
@34,35,38,37#; ~ii ! stronger tapping leads to faster initi
compaction but to less effective asymptotic packing@37#;
~iii ! the slow densification kinetics leads to irreversibili
effects and to the observation of two curves for the pack
01130
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density as a function of tapping intensity@37#, one essen-
tially reversible and another irreversible depending on
experimental protocol chosen@39#; ~iv! the power spectrum
of the density fluctuations near the steady state is distin
nonLorenztian and displays a power-law regime at interm
diate frequencies@6,7,39–41#; ~v! nontrivial memory effects
are observed when changing abruptly the tapping inten
@39,40#.

Note that, as recently studied for a one-dimensio
model with tapping dynamics@30#, the parking-lot model
could also be used, via the introduction of two kinds of p
ticles, to describe the segregation phenomena with the
called Brazil nut@47,48# and reverse Brazil nut@49,50# ef-
fects.

III. LIMIT OF VANISHINGLY SMALL TAPPING
INTENSITY: K\`

In this limit, ejection of one particle from the line is fol
lowed by an infinite number of insertion trials until one o
seldom, two new particles are added. The stable
‘‘blocked’’ configurations are thus those for which no mo
particle insertions are possible~recall that once successfull
inserted particles cannot move on the line!, i.e., all configu-
rations of nonoverlapping rods such that the available l
fraction F is zero, or, equivalently, such that all gaps b
tween neighboring particles are smaller than a particle s
~here taken as unity!. The prescription proposed by Edward
and co-workers for constructing a statistical mechanical
scription of this system is then to consider that all su
‘‘blocked’’ configurations at a fixed densityr are equiprob-
able ~flat or microcanonical distribution!.

Consider a line of lengthL with N particles. With periodic
boundary conditions, this system has alsoN gaps between
neighboring particles. Denoting byh1 ,h2 , . . . ,hN the
lengths of these gaps, the total number of ‘‘blocked’’ co
figurations is given by the configurational integral calculat
under the constraint thathi,1 for i 51, . . . ,N, namely,

Z~L,N!5E
0

1

•••E
0

1S )
i 51

N

dhi D dS L2N2(
i 51

N

hi D , ~5!

which by using the integral representation of thed-function
can be rewritten as

Z~L,N!5E
C
dz ez(L2N)S )

i 51

N E
0

1

dhi e2zhi D , ~6!

whereC denotes a closed contour. Integrating over thehi8s
yields

Z~L,N!5E
C
dzexpH LFz~12r!1r lnS 12exp~2z!

z D G J ,

~7!

where r5N/L. In the macroscopic limit whereN→`, L
→`, with a fixedr, the above expression can be evalua
through a saddle-point method, which gives
7-2
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STATISTICAL MECHANICAL DESCRIPTION OF THE . . . PHYSICAL REVIEW E 69, 011307 ~2004!
Z~L,N!.exp@Ls~r!#, ~8!

wheres(r), the entropy density, is expressed as

s~r!5~12r!z1r lnS 12e2z

z D , ~9!

wherez[z(r) is the solution of the saddle-point equation

S 12r

r D5
1

z
2

e2z

12e2z
. ~10!

In Edwards’ language, 1/z5(](Ls)/]LuN)21 is the com-
pactivity ~up to a trivial constant! @51#. In an equilibrium
system of hard rods, i.e., without the constraint that all g
have a length smaller than 1,z(r) would simply be equal to
P/(kBT)5r/(12r) whereP is the pressure.

By Legendre transforming the entropyS(L,N)5Ls, one
obtains a new potential

Y~N,z!52S~L,N!1zL5NFz2 lnS 12e2z

z D G ~11!

such that](Y)/]zuN5^L& and from which one can obtain th
fluctuations of the system size,

^L2&2^L&252
]2~Y!

]z2 U
N

52N
]~1/r!

]z U
N

. ~12!

By combining the above expression with Eq.~10!, one de-
rives the fluctuations of the density,

L~^r2&2^r&2!5
r3

N
~^L2&2^L&2!5r3S 1

z2
2

e2z

~12e2z!2D .

~13!

In the constrained microcanonical ensemble, one can
calculate the gap distribution functions. The one-gap dis
bution functionG(h;r), which gives the density of gaps o
lengthh, is obtained from

GEd~h;r!5
1

LZ~L,N! (
i 51

N E
0

1

•••E
0

1S )
j 51,j Þ i

N

dhj D
3dS L2N2h2 (

j 51,j Þ i

N

hj D . ~14!

By using the same method as before one finds that

GEd~h;r!5H r
z

12e2z
e2zh for h,1

0 for h.1,

~15!

wherez is the solution of Eq.~10!. It is easy to check that the
above expression satisfies the two sum rules, Eqs.~2! and
~3!.
01130
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The higher-order gap distribution functions are obtain
along the same lines, and they satisfy a factorization prop
analogous to that found for an equilibrium system of ha
rods, i.e.,

GEd~h,h8;r!5GEd~h;r!GEd~h8;r!, ~16!

GEd~h,h8,h9;r!5GEd~h;r!GEd~h8;r!GEd~h9;r!,
~17!

etc.
The one-gap distribution functionGEd(h;r) is directly

related to the nearest-neighbor pair distribution function t
represents the probability of finding two neighboring pa
ticles whose centers are separated by a distance 11h. It is
also possible to calculate the full pair distribution functio
gEq(r ;r) via a method which closely follows that which wa
developed for the equilibrium system of hard rods@52#. The
steps of the calculation are detailed in Appendix A, and
final result reads

gEd~r ;r!5
1

r (
m51

`
~r 2m!m21

~m21!! S (
k50

m

Cm
k ~21!ku~r 2m2k!D

3S z

12e2zD m

e2z(r 2m), ~18!

whereu(x) is the Heaviside step function andz is the solu-
tion of Eq. ~10!. For comparison, we give the equilibrium
pair distribution function@52#

geq~r ;r!5
1

r (
m51

`

u~r 2m!
~r 2m!m21

~m21!! S r

12r D m

3e2[r/(12r)]( r 2m). ~19!

We can now compare the above results derived under
condition of equiprobability of the ‘‘blocked’’ configuration
with the exact ones obtained either analytically or nume
cally. WhenK→`, analytical results are available in the tw
limits, t501, which corresponds to the purely irreversib
RSA process at the jamming limit where no more partic
can be inserted@44#, and t→1`, which corresponds to a
close-packed state withr51.

For the RSA at the jamming limit, closed-form expre
sions have been derived for the saturation density@44#,

rJL5E
0

`

dt expS 22E
0

t

du
12e2u

u D .0.747 59 . . . ,

~20!

for the density fluctuations@45#, for the gap distribution
functions @46#, and for the pair distribution function@45#.
~The expressions are given in Appendix B.! When comparing
to the approximate results at the same density,rJL one finds
qualitative differences. Most notably,~i! the exact one-gap
distribution function displays a logarithmic divergence
contact between particles (h→01),

G~h;rJL!.2e22gln~h!, ~21!
7-3
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G. TARJUS AND P. VIOT PHYSICAL REVIEW E69, 011307 ~2004!
whereg is the Euler constant,~ii ! the exact multigap distri-
bution functions do not reduce to products of the one-g
functions,~iii ! the exact pair distribution function has a s
perexponential decay at large distances,

g~r ,rJL!21;
1

G~r !
, r→`, ~22!

all features that are missed by the flat-measure express
since

GEd~h50;rJL!5rJL

z~rJL!

12z~rJL!
, ~23!

gEd~r ,rJL!21;2ez(rJL)r , r→`, ~24!

and the multigap functions satisfy a factorization prope
Eqs.~16! and ~17!.

Quantitatively, one can also see differences, e.g., in
density fluctuations, the exact result at jamming be
L(^r2&2^r&2).0.038 to be compared withL(^r2&
2^r&2)Ed.0.028.

Such observations, which generalize to an off-latt
model the results obtained by de Smedtet al. @31,32# for
random and cooperative sequential adsorption models
one-dimensional lattice, are in fact to be expected: it
been shown that the RSA process generates configuratio
hard particles that are sampled from a probability distrib
tion that is ‘‘biased’’ when compared to a uniform~flat! dis-
tribution @53,54#.

As the system further evolves with time at vanishing
small tapping intensity, compaction takes place beyond
RSA saturation density, and the difference between the ac
properties of the system and those predicted by the flat m
sure diminishes.

Figure 1 compares the variation withr ~for r>rJL) of
the density fluctuations of the parking-lot model~simulation
results! with the approximate result, Eq.~13!, and the equi-
librium curve, L(^r2&2^r&2)eq5r(12r)2. The prediction
is in fair agreement with the simulation data, especially
intermediate densities, but it reaches too rapidly the equ
rium curve that ~slightly! overestimates the exact resu
~Note that simulating the system becomes very time cons
ing as compaction goes on and, in practice, we canno
beyond a density of about 0.93; the infinite-time limit shou
of course ber51.! However the description improves upo
the equilibrium curve and gives the proper shape of the d
sity dependence with an inflection aroundr.0.87. The
closeness of the flat-measure result and the equilibrium
~the former being with the constraint that no gaps hav
length larger than 1) at high density is illustrated in Fig
where we show the entropy density versus particle dens

In Figure 3 we have displayed on a logarithmic-linear p
the predicted and computed one-gap distribution functi
for four different densities. The approximation is too small
smallh for r50.75, which is reminiscent of the missing th
logarithm divergence at the RSA jamming limitrJL50.747
~see above!. Otherwise the agreement with the simulati
01130
p

ns,

,

e
g

e

a
s
of

-

e
al
a-

r
-

-
o

n-

ne
a

.
t
s
t

data is very good~recall that this is a log-linear plot!. For
h.1, the description is exact sinceGEd(h.1)50.

Finally, we have plotted in Figs. 4–6 the pair distributio
functions ~simulation data, approximation, equilibrium
curve! for three different densities:r50.77, r50.82, and
r50.92. The flat measure is an improvement upon the e

FIG. 1. Density fluctuations of the parking-lot model whenK
→1` for densities above the RSA jamming limit. Simulation da
~obtained by averaging 20 000 different runs for a system sizL
5500) are shown as the full line, the flat-measure approxima
corresponds to the dashed curve, and the equilibrium result to
dotted curve. The inset displays the density fluctuations at equ
rium and in the approximation for a larger range of densities.

FIG. 2. Entropy density vs particle density for a hard-rod s
tem: Edwards entropy for the parking-lot model whenK→` ~full
curve! and equilibrium entropy~dashed curve!.
7-4
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STATISTICAL MECHANICAL DESCRIPTION OF THE . . . PHYSICAL REVIEW E 69, 011307 ~2004!
librium curve, but even atr50.82 ~Fig. 5!, it somewhat
overestimates the oscillations at large distances. For
50.92 ~Fig. 6!, the difference between the three curves
barely visible. Note that for 1<r ,2, the pair distribution
function is equal to the nearest-neighbor distribution fu
tion, hence to the one-gap distribution function shown
Fig. 3

FIG. 3. Parking-lot model whenK→1`: log-linear plot of the
one-gap distribution function vsh for several densities: from top to
bottom r50.75,0.85,0.89,0.92. Comparison of simulation d
~wavy line! and flat-measure approximation~full curve!.

FIG. 4. Pair distribution function in the parking-lot model whe
K→1` at r50.77: simulation data~wavy curve!, flat-measure
approximation~full curve!, and equilibrium~dashed curve!.
01130
s
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IV. FINITE TAPPING INTENSITY: K FINITE

When the tapping intensity, i.e., 1/K, is finite, one must
modify the definition of the stable or ‘‘blocked’’ states. In
deed, for finiteK, the configuration of hard rods obtaine
after a desorption-adsorption event is no longer character
by F50, and the gaps between particles can be larger t
one. One also knows that the tapping intensity 1/K is not the
proper ‘‘thermodynamic’’ parameter to add to the density
order to characterize the macrostate of the system in a st
tical mechanical approach: the memory effect observed
perimentally@8# and reproduced by the present parking-

FIG. 5. Same as Fig. 4 forr50.82.

FIG. 6. Same as Fig. 4 forr50.92.
7-5
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G. TARJUS AND P. VIOT PHYSICAL REVIEW E69, 011307 ~2004!
model ~see above! implies that the system can be found
states, characterized by the same densityr and the same
tapping intensity 1/K, that however evolve differently unde
further tapping with the same intensity 1/K; as illustrated in
Fig. 7, the density may increase in one case and decrea
another.

If the tapping intensity is not an appropriate thermod
namic parameter, a natural choice for a two-parameter st
tical mechanical description appears to beF, the available
line fraction, that one can use in conjunction with the dens
r. A nonzeroF generalizes to a finite tapping intensity, th
prescription uses for vanishingly small intensity, namely,F
50, andF is also directly relevant for describing the com
paction kinetics, as shown by Eq.~1!. We thus consider a
statistical mechanical ensemble in which all configuratio
of nonoverlapping hard rods characterized by fixed value
r andF are equally probable.

Denoting byA the total length available for insertion for
particle center (A5FL), the configurational integral with
the constraints of fixedA, fixed system sizeL, and fixed
number of particlesN is given by

Z~L,N,A!5E
0

L

•••E
0

L

)
i 51

N

dhidS L2N2(
i 51

N

hi D
3dS A2(

i 51

N

u~hi21!~hi21!D , ~25!

which can be rewritten as before as

FIG. 7. Memory effect in the parking-lot model. The full curv
corresponds to a process at constantK52000 whereas the dashe
curve shows the kinetics whenK is switched from 2000 to 500 a
ts51000. The pointsA andB correspond to states with equal de
sity, equal value ofK5500, but different further evolution. The
inset shows the phenomenon with a larger scale~upper curve, con-
stantK5500; lower curve, constantK52000).
01130
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Z~L,N,A!5E
C
dzE

C8
dy expH LFz~12r!1yF

1r lnS z1y@12exp~2z!#

z~z1y! D G J , ~26!

whereC andC8 denote two closed contours. In the macr
scopic limit,N→`, L→`, A→` with r andF fixed, one
can again use a saddle-point method to evaluate the integ
which leads to

Z~L,N,A!.exp@Ls~r,F!#, ~27!

wheres(r,F) is expressed as

s~r,F!5~12r!z1yF1r lnS z1y@12exp~2z!#

z~z1y! D ,

~28!

with z[z(r,F) and y[y(r,F) solutions of the two
coupled equations

S 12r

r D5
1

z
1

1

z1y
2

11ye2z

z1y~12e2z!
, ~29!

F

r
5

1

z1y
2

12e2z

z1y~12e2z!
. ~30!

z5(]S/]L)N,A can again be considered as the inverse of
‘‘compactivity,’’ but an additional intensive parametery
5(]S/]A)N,L is needed.

A double Legendre transformed potentialY(N,z,y) can
be introduced as

Y~N,z,y!52Ls~r,F!1zL1yA

5NFz2 lnS z1y@12exp~2z!#

z~z1y! D G . ~31!

Then, ](Y)/]zuN,y5^L& and ](Y)/]yuN,z5^A&, and the
fluctuations inL andA are given by

^L2&2^L&252
]2~Y!

]z2 U
N,y

52N
]~1/r!

]z U
y

, ~32!

^A2&2^A&252
]2~Y!

]y2 U
N,z

52N
]~F/r!

]y U
z

, ~33!

^LA&2^L&^A&52
]2~Y!

]z]y U
N

52N
]~F/r!

]z U
y

52N
]~1/r!

]y U
z

. ~34!
7-6
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STATISTICAL MECHANICAL DESCRIPTION OF THE . . . PHYSICAL REVIEW E 69, 011307 ~2004!
By using the saddle-point equations, Eqs.~29! and ~30!,
one arrives at the following expression for the fluctuations
r:

L~^r2&2^r&2!5
r3

N
~^L2&2^L&2!

5r3S 1

z2
1

1

~z1y!2
2

11~21z1y!ye2z

@z1y~12e2z!#2 D .

~35!

Similar expressions are obtained for the fluctuations oF
and the cross fluctuations ofr and F, but are not shown
here.

The gap distribution functions can also derived by follo
ing the same method as in the preceding section. This le
to

GEd~h;r!55 r
z~z1y!

z1y~12e2z!
e2zh for h,1

r
z~z1y!

z1y~12e2z!
e2[zh1y(h21)] for h.1,

~36!

whereas the multigap distribution functions satisfy the f
torization property, e.g., GEd(h,h8;r,F)
5GEd(h;r,F)GEd(h8;r,F). Notice that the one-gap distri
bution function is a piecewise continuous function that ob
the exact sum rules, Eqs.~2!–~4!. It is also worth pointing
out that the results of Sec. III (K→`) can be recovered by
taking the limit y→` in the above equations. Finally, th
pair distribution function can be derived along the same li
as shown before and in Appendix A, but the calculation
too tedious and not sufficiently insightful to be presen
here.

A comparison between the two-parameter flat meas
and the simulation data is shown in Figs. 8 and 9 for
density fluctuations withK5500 andK55000, respectively.
We have also plotted the equilibrium curve,L(^r2&eq

2^r&eq
2 )5r(12r)2, and the one-dimensional RSA curv

@45# up to rJL . The predictions are good but not perfe
They display the proper nontrivial shape of ther depen-
dence, in contradistinction to the equilibrium curve, but th
is a significant underestimation of the fluctuations in the d
sity range around the RSA jamming limit. Note that at hi
density the approximation is in very good agreement with
simulation data~at least forK5500) and does not merge to
rapidly with the equilibrium curve as seen above for the c
K→`.

The one-gap distribution functions shown on a log-line
plot in Fig. 10 illustrate also the overall good agreeme
between the two-parameter measure predictions and
simulation data. The approximation captures the chang
the slope of the one-gap distribution function that occurs
h.1; but the curvature seen in the simulation data foh
slightly larger than 1 is not correctly reproduced by the tw
parameter measure which predicts an exponential decay
01130
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a factor equal toz1y @see Eq.~36!#. Again, this discrepancy
is larger for densities around of the RSA jamming limit~the
two intermediate sets of curves in Fig. 10!.

V. CONCLUSION

In this work we have applied the statistical mechani
approach based on the microcanonical~‘‘flat’’ ! measure pro-

FIG. 8. Density fluctuations as a function ofr for K5500. The
dotted curve corresponds to the equilibrium density fluctuations,
dot-dashed curve to the RSA result, the dashed curve to the
parameter approximation, and the wavy line to the simulation d
~obtained by averaging 15 000 different runs for a system sizL
5400). The inset displays the same curves for a larger rang
densities.

FIG. 9. Same as Fig. 8 forK55000.
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posed by Edwards and co-workers to the out-of-equilibri
situation obtained in the parking-lot model. This latter is
microscopic off-lattice model that reproduces the major f
tures of the phenomenology of vibrated granular materi
In the statistical mechanical description, a macrostate of
system is characterized by fixed values of two macrosco
quantities, the particle densityr and the available line frac
tion F ~or rather fixed values of three extensive paramet
the number of particles, the system size, and the total len
available for insertion of particles!, and all configurations of
nonoverlapping particles with fixedr and F are taken as
equiprobable.

We show that such an approach misses some of the q
tative signatures of the limiting case of a purely irreversi
adsorption process~RSA! at the jamming limit. However, a
higher densities, i.e., in the slow~logarithmic! compaction
regime, it gives a good, yet not perfect, quantitative desc
tion of many observable quantities~fluctuation, distribution
functions!. The choice ofF as an additional ‘‘thermody-
namic’’ parameter is able to account for situations, enco
tered in various memory effects, in which macrostates ch
acterized by the same density and the same tapping inte
can nonetheless be different.

The fact that a ‘‘thermodynamic’’ approach gives a go
description of a model of vibrated granular media is prom
ing. In the one-dimensional model studied here, the gene
ized ‘‘equation of state’’ associated with the compactivit
based microcanonical distribution can be analytically deriv
so that one can make theoretical predictions concerning,
the density fluctuations or the structure of the configuratio
However, one still faces the task of predicting the state of
system for a given preparation, i.e., for a given time~number

FIG. 10. Parking-lot model whenK5500: log-linear plot of the
one-gap distribution function vsh for several densities: from top to
bottom in the middle of the figurer50.682,0,748,0.790,0.83
Comparison of simulation data~wavy line! and two-parameter ap
proximation~full curve!. For r50.83, there is virtually no differ-
ence between the two curves.
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of taps! and a given protocol for the tapping intensity. We a
presently working on this problem.

APPENDIX A: PAIR DISTRIBUTION FUNCTION IN THE
CONSTRAINED MICROCANONICAL ENSEMBLE

„K\`… AND AT EQUILIBRIUM

We introduce the probability densityCm(j) of finding
two given particles at a relative distancej, such that there is
exactly m21 particles between them; this function can
expressed in terms of the partition function as

Cm~j!5
Z~j,m21!Z~L2j,N2m!

Z~L,N!
, ~A1!

whereZ(L,N) can be calculated either with the constrain
microcanonical distribution or at equilibrium.

For largeN, one can use the asymptotic expression of
partition function Z(L,N)5ez(L2N)f(z)N. At equilibrium
f(z)51/z whereas with the constrained microcanonic
measure, one getsf(z)5(12e(2z))/z and z given by Eq.
~10!. Therefore, the probability density is equal to

Cm~j!5Z~j,m21!
1

f~z!m
e2z(j2m) ~A2!

and, formally, the pair distribution function can be express
as

g~r ,r!5
1

r (
m51

`

Cm~r !. ~A3!

For hard rods, the partition functionZ(j,m21) is different
from 0 for j.m. At equilibrium, one has forj.m

Z~j,m21!5
~j2m!m21

~m21!!
~A4!

andz5r/(12r), which gives for the pair distribution func
tion @52#

geq~r ,r!5
1

r (
m51

`
u~r 2m!~r 2m!m21

~m21!! ~1/r21!m
expS 2

r 2m

1/r21D
~A5!

when r .1, whereu(x) is the Heaviside function.
In the constrained microcanonical ensemble, the exp

sion for Z(j,m21), hence forcm(r ), involvesm11 con-
tributions. For instance,C1(r ) is given by

C1~r !5@u~r 21!2u~r 22!#
z

12e2z
e2z(r 21). ~A6!

More generally

cm~r !5 (
k50

m

Cm
k ~21!ku~r 2m2k!S z

12e2zD m

e2z(r 2m).

~A7!

Inserting Eq. ~A7! into Eq. ~A3! yields Eq. ~18!.
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APPENDIX B: RSA EXPRESSIONS AT THE JAMMING
LIMIT

For the one-dimensional RSA process, the one-gap di
bution function at the jamming limit (t→`) is given by
@42,43#

G~h;rJL!5H 2E
0

`

dt tk(t)2e(2th) for h,1

0 for h.1,

~B1!

with

k~ t !5expS 2E
0

t12e2u

u
duD . ~B2!

The pair distribution function can be expressed in a clo
form by using the Laplace transform g̃(s,t)
5*0

1`dl e2slg( l 11,t). At the jamming limit, one has@45#

g̃~s,rJL!5
1

rJL
2 S 1

s F E
0

`

dt1
k~ t1!k~ t11s!

k~s! G2

22E
0

`

dt1
k~ t1!k~ t11s!

k~s!
E

0

t1
dt2

k~ t2!k~ t21s!

k~s!

3E
0

t2
dt3

e2t3k2~s!

k2~ t31s!
B~s,t3!D . ~B3!
.R

.R

.R

hy

d

v.

E

01130
ri-

d

with

B~s,t !5
1

s1t
2

12e2(s1t)

~s1t !2
. ~B4!

The expression for the density fluctuations follows from t
above equation by taking the limits→0 of the expression

r„112r@ g̃(s,rJL)e2s21/s#… @45#. This gives

L~^r2&2^r&2!5rJLF2112rJL2
4

rE0

`

dt1k2~ t1!

3E
0

t1
dt2k2~ t2!E

0

t2
dt3e2t3k22~ t3!

3S 1

t3
2

12e2t3

t3
2 D G.0.038. ~B5!

At the same densityrJL , the equilibrium value isL(^r2&
2^r&2)eq50.0476.
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