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Statistical mechanical description of the parking-lot model for vibrated granular materials
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We apply the statistical mechanical approach proposed by Edwards and co-workers to the parking-lot model,
a model that reproduces the main features of the phenomenology of vibrated granular materials. We first build
the compactivity-based measure for the case of vanishingly small tapping strength and then generalize the
approach to finite tapping strengths by introducing a “thermodynamic” parameter, the available volume for
particle insertion, in addition to the particle density. This description is able to take into account the various
memory effects observed in vibrated granular media. Although not exact, the approach gives a good description
of the behavior of the parking-lot model in the regime of slow compaction.

DOI: 10.1103/PhysRevE.69.011307 PACS nuner45.70.Cc, 05.70.Ln

[. INTRODUCTION [6,7,37—41, the interest of the model is that exact analytical
results can be derived or, when not possible, very accurate
Granular media are athermal, out-of-equilibrium systemswmerical data can be obtained from computer simulations.
which would be useful to describe within a statistical me-In the following section, we briefly introduce the parking-lot
chanical framework. A given macrostate of such a systeninodel and we discuss its connection to vibrated granular
characterized by a fixed density of grai®nsider for sim- materials. In Sec. lll, we consider the limit of vanishingly
plicity a packing of monodisperse spherical partigissvery ~ small (but nonzero tapping intensity; we construct for this
likely to be associated with an exponentially large number of@se a description based on a microcanorfitaf) measure
microstates or particle configurations. How the packing wadn Which all “blocked” states are considered as equiprobable
preparedby pouring, shaking, shearing, etenay influence and we compare the resulting predictions to the exact behav-
its properties and change the way the associated particle col- In the following section, we generalize the study to the
figurations are sampled when repeating over the same expefiase of a finite tapping intensity: we consider what appears
mental protocol. However, the simplest hypothesis, put forf0 be the simplest, yet compatible with known experimental
ward by Edwards and his co-workefd—4], is that all observations, generalization of the Edwards’ formalism. Fi-
microstates characterized by a given average density afally, we discuss the merits and limitations of the approach.
equiprobable. With this “flat"(microcanonicglmeasure, one
can bgild a statistigal mechanical framewqu in which €N- || THE MODEL AND ITS CONNECTION TO VIBRATED
tropy, i.e., the Ioganthm of the ngmber pf microstates, is the GRANULAR MATERIALS
relevant thermodynamic potential. This approach has re-
cently been the focus of an intense research activity, in con- The parking-lot model is a one-dimensional random
nection with a series of experiments performed on weaklyadsorption-desorption process of hard rods on a line. Hard
vibrated granular materia[$—9] and with a theoretical de- rods of lengtho are deposited at random positions on a line
scription of out-of-equilibrium glassy systems based on theat ratek, and are effectively inserted if they do not overlap
concept of effective temperatuf&0-14. with predeposited rods; otherwise they are rejected. In addi-
In the past few years, the hypothesis of Edwards and cation, all deposited particles can desorb, i.e., be ejected from
workers has been tested on many models, virtually all othe line at random with a rate_ . Time is measured in units
them being lattice models with some kind of “tapping” ki- of 1/k. , length in units ofo, and the model depends on one
netics[15—33. In the absence of experimental tests of thiscontrol parameterK=k, /k_. When no desorption is
approach(see, however, Ref.6]), such theoretical studies presentk_=0), the model reduces to the purely irreversible
are expected to better circumscribe the conditions of validityone-dimensional random sequential adsorptiB$A) pro-
of the statistical mechanical descriptioffresumably, only cess[42—44], and all the properties of the system as a func-
“approximate validity” can be expected since, aside fromtion of time are known exactlj44—44. In addition, for 1K
specific mean-field modelgl0,14], such a simplified de- nonstrictly equal to zero, the competition of mechanisms be-
scription of out-of equilibrium situations in terms of a small tween adsorption and desorption allows the system to reach a
number of “thermodynamic” parameters is unlikely to be steady state that is nothing but an equilibrium fluid of hard
exact) rods at constant activity K/ there too, all properties are
In this paper, we consider a statistical mechanical apknown exactly.
proach for the one-dimensional model of random adsorption- The densification kinetics of the parking-lot model at con-
desorption of hard particlef34—-36, also known as the stantK is described by
parking-lot mode[6]. This latter is a microscopic, off-lattice
model that mimics many features of the compaction of a ap o
vibrated column of grains. Besides a qualitative description —| =), 1)
of the phenomenology of weakly tapped granular media Ity K
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wherep(t) is the density of hard rods on the line at time density as a function of tapping intensit$7], one essen-
(recall thato=1) and®(t) is the fraction of the line that is tially reversible and another irreversible depending on the
available at time for inserting a new particle, i.e., the prob- experimental protocol chosdB9]; (iv) the power spectrum
ability associated with finding an interval free of particlas of the density fluctuations near the steady state is distinctly
“gap”) of length at least 1. The quantitigsand® can be  nonLorenztian and displays a power-law regime at interme-
calculated from the one-gap distribution functi@yh,t) diate frequenciefs,7,39—41; (v) nontrivial memory effects
which is the density of gaps of length at timet via a  are observed when changing abruptly the tapping intensity
number of “sum rules”: [39,4Q.
Note that, as recently studied for a one-dimensional
o model with tapping dynamic$30], the parking-lot model
p(t)= fo dh G(h.t), 2) could also be used, via the introduction of two kinds of par-
ticles, to describe the segregation phenomena with the so-
called Brazil nut[47,48 and reverse Brazil nui49,5Q ef-

1—p(t)=f:dh hG(h,t), (3) fects.

. [ll. LIMIT OF VANISHINGLY SMALL TAPPING
q)(t):f dh(h—1)G(h.t). 7 INTENSITY: K->
! In this limit, ejection of one particle from the line is fol-

The evolution with time of the one-gap distribution function |0Wed by an infinite number of insertion trials until one or,
can itself be described by a kinetic equation that involveﬁéeldom’ ,,tWO new particles are added. The stable or
two-gap distribution functions, and so f87]. Except for the  Plocked” configurations are thus those for which no more
two above mentioned limiteRSA whenk =0, equilibrium particle insertions are possibfeecall that once successfully
whent— +<), the infinite hierarchy of coupled equations ms.erted particles cannot move on the Jinee., all co'nflgu— .
cannot be solved analytically and one must resort to approxir-at'ons of nonoverlapping rods such that the available line

mate treatments and computer simulations, as described [ﬁactlon q; |rs]bze_ro, or, tgq|uwalently, Slllj(:ht;hat all g:;\_pls b?'
previous paper&37—4d, ween neighboring particles are smaller than a particle size

First introduced in the context of protein adsorption at(here taken as unilyThe pres_cription pFOPosed by Edyvards
liquid-solid interfaces[34—3§, the random adsorption- and co-workers for constructing a statistical mechanical de-

desorption model has recently been applied to the descriptio) cription"of thjs sy;tem Is thgn to con_sider that_all such
of weakly vibrated granular materidl6,7,37—41. The con- locked conf|gurat|on§ ata f|x§d QenS|ty are equiprob-
nection between the parking-lot model and these latter igble(flat_ or mlqrocanonlcal d|_str|but|0n_ . .
made by regarding the particles on the line as an avera Consider a line of length with N particles. With periodic

e " >
layer of grains in the vibrated column. Time measures th%)ogndary conquns, this systfam has alaqaps between
eighboring particles. Denoting by ,h,, ... hy the

number of taps whose effect is to eject particles from th
b ) P engths of these gaps, the total number of “blocked” con-

layer; ejection is followed by the arrival at random of par- p» _ o by th p, ional i | calculated
ticles in the layer, which mimics the gravity-driven relax- 9urations is given by the configurational integral calculate
under the constraint thét,<1 fori=1,... N, namely,

ation step in the experiment. Considering that the main in

fluence of the intensity of the tapping is to determine the ) N N

average number of particles ejected at each(tiaip number _ N

being an increasing function of intensitieads to associate Z(LN)= fo o fo (.1:[1 dh‘) 5( L=N .21 h‘)' ®)

1/K with the tapping strength. A two-dimensional version of

the model with some polydispersity of the particles wouldwhich by using the integral representation of #éunction

clearly be more realistic, but one does not expect this t@an be rewritten as

change the qualitative features of the mof#3]. A more

serious caveat is the absence of an explicit account of the N

mechanical stability of the particle packings: stability is only Z(L,N)= jcdz ez('-N)< Hl Jo dh eZhi) , (6)
=

Z(1—p)+pln

1—exp—2)
=

implicitly described by the fact that the particles are blocked
on the line between two successive desorption events. ]

Despite drastic simplification of the situation encounteredVhereC denotes a closed contour. Integrating over fthe
in vibrated granular materials, the parking-lot model repro-Yyields
duces at a qualitative level most of the relevant phenomenol-
ogy: (i) for large rateK corresponding to weak tapping in- 7 _f p[ ]

. . (L,N)= ] dzexp/ L ,

tensity, compaction proceeds very slowly and can be c
effectively described by an inverse logarithm of time (7)
[34,35,38,3T. (ii) stronger tapping leads to faster initial
compaction but to less effective asymptotic pack|[3J]; where p=N/L. In the macroscopic limit wher®&—o, L
(iii) the slow densification kinetics leads to irreversibility —oo, with a fixedp, the above expression can be evaluated
effects and to the observation of two curves for the packinghrough a saddle-point method, which gives
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Z(L,N)=exg Ls(p)], (8) The higher-order gap distribution functions are obtained
along the same lines, and they satisfy a factorization property
wheres(p), the entropy density, is expressed as analogous to that found for an equilibrium system of hard
rods, i.e.,
1-e?
s(p)=(1=p)z+pin|——/, 9 Ged(h,h";p)=Geq(h;p)Ged(h';p), (16)
wherez=z(p) is the solution of the saddle-point equation Ged(h,h’,h";p)=Geq(h;p)Ged(h’;p)Geg(h”;p), -
1-p\ 1 e* etc.
p |z 1-e7 (10 The one-gap distribution functioGgy(h;p) is directly

related to the nearest-neighbor pair distribution function that
In Edwards’ language, 2# (d(Ls)/dL|y) "t is the com-  represents the probability of finding two r_1eighboring_ par-
pactivity (up to a trivial constant[51]. In an equilibrium ticles whose centers are separated by a distariel. it is
system of hard rods, i.e., without the constraint that all gap§|30 possible to calculate the full pair distribution function
have a length smaller than (p) would simply be equal to  Jeq(r;p) Via a method which closely follows that which was

P/(kgT)=p/(1— p) whereP is the pressure. developed for the equilibrium system of hard rg8g]. The
By Legendre transforming the entroL,N)=Ls, one Steps of the calculation are detailed in Appendix A, and the
obtains a new potential final result reads
1-e? 1o (r—mmi o )
=— =N|z— p)=— —_— -1 -m—k
Y(N,2)=~S(L,N)+zL=N| z In( _ ) ) Gedrip)= X gy | & O D e —m—k)
such thaw(Y)/dz|y= (L) and from which one can obtain the % z me,z(r,m) (18)
fluctuations of the system size, 1—e 2 '
5 5 3*(Y) I(?(l/p)| where 6(x) is the Heaviside step function amds the solu-
(L)—=(L)*=~ 972 TN, | . (12 tion of Eq. (10). For comparison, we give the equilibrium
N N pair distribution functior{52]
By combining the above expression with EG0), one de- 17 (r—mmt/ p\m
rives the fluctuations of the density, Oeq(rip)= » mz:l o(r—m) (m=1)] (1_p)
3 - T ol(1—o)I(r—
L(<p2>—<p>2):p—(<|_2>—<|_>2)=p3 i_e—z) x @~ [P/(1=p)I(r—m) (19
N 7’ (1-e 7?2 .
(13) We can now compare the above results derived under the

condition of equiprobability of the “blocked” configurations

In the constrained microcanonical ensemble, one can alsith the exact ones obtained either analytically or numeri-
calculate the gap distribution functions. The one-gap districally. WhenK— o, analytical results are available in the two

bution functionG(h;p), which gives the density of gaps of limits, t=0", which corresponds to the purely irreversible
lengthh, is obtained from RSA process at the jamming limit where no more particles

can be insertedl44], andt— +cc, which corresponds to a

1 N 1/ N close-packed state with=1.
Gedhip)= 5Ny > f f ( IT dhj) For the RSA at the jamming limit, closed-form expres-
(L.N) =1 Jo 0 \i=Lj#i sions have been derived for the saturation derjgit,
N —u

0 t —
X8| L=N—h- >, .hj)- (14 pJL=f dtexp(—zf du—° ):0.74759...,

j=Tj#i 0 0 u

(20

By using the same method as before one finds that
for the density fluctuation$45], for the gap distribution
i for hel functions [46]., and for .the pair distripution functioﬁ45_].
Gey(hip) = p 1—e‘ze or (15 (The expressions are given in Appendiy B/lhen comparing
EdTLP to the approximate results at the same dengify,one finds
0 forh>1, qualitative differences. Most notablyi) the exact one-gap

distribution function displays a logarithmic divergence at
wherez s the solution of Eq(10). Itis easy to check that the contact between particledi{-0"),

above expression satisfies the two sum rules, Esand
3. G(h;py)=—e 2"In(h), (21)
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wherey is the Euler constantji) the exact multigap distri- 04— 71— 1 T
bution functions do not reduce to products of the one-gap k 02T T T
functions, (i) the exact pair distribution function has a su-
perexponential decay at large distances,

0.03 -
1
g(r!pJL)_1~m1 [—oo, (22) - . 1 A
A ‘e
. . \?/. 1 I 1 I |/[/|‘-‘|<\l\
all features that are missed by the flat-measure expressions, « 002 0 02 04 0608 11

since 5 _
z(py1)
Ggqy(h=0; =pT— 23 0.01 -
Ed( pJL) PIL 1_Z(pJL) ( )
Geq(r,pg) — 1~ —€ar, s, (24 1
ol 11y
and the multigap functions satisfy a factorization property, 0.75 0.8 0.85 0.9 0.95 1

Eqgs.(16) and(17). P

Quantitatively, one can also see differences, e.g., in the FIG. 1. Density fluctuations of the parking-lot model whign
density fluctuations, the exact result at jamming being— + o for densities above the RSA jamming limit. Simulation data
L({p?)—(p)?)=0.038 to be compared withL({p?)  (obtained by averaging 20 000 different runs for a system kize
—<p>2)Ed:0.028. =500) are shown as the full line, the flat-measure approximation

Such observations, which generalize to an off-latticecorresponds to the dashed curve, and the equilibrium result to the
model the results obtained by de Smedtal. [31,32 for dotted curve. The inset displays the density fluctuations at equilib-
random and cooperative sequential adsorption models on réium and in the approximation for a larger range of densities.
one-dimensional lattice, are in fact to be expected: it has
been shown that the RSA process generates configurations @hta is very goodrecall that this is a log-linear plptFor
hard particles that are sampled from a probability distribut>1, the description is exact sin€g4(h>1)=0.
tion that is “biased” when compared to a unifortfiat) dis- Finally, we have plotted in Figs. 4—6 the pair distribution
tribution [53,54. functions (simulation data, approximation, equilibrium

As the system further evolves with time at vanishingly curve for three different densitiesp=0.77, p=0.82, and

small tapping intensity, compaction takes place beyond thg=0.92. The flat measure is an improvement upon the equi-
RSA saturation density, and the difference between the actual

properties of the system and those predicted by the flat mea-
sure diminishes.

Figure 1 compares the variation wigh (for p=p; ) of - .
the density fluctuations of the parking-lot modsimulation
result3 with the approximate result, E413), and the equi-
librium curve, L({p?)—(p)?)eq=p(1—p)% The prediction
is in fair agreement with the simulation data, especially for
intermediate densities, but it reaches too rapidly the equilib-
rium curve that(slightly) overestimates the exact result.
(Note that simulating the system becomes very time consum

ing as compaction goes on and, in practice, we cannot geg -2

beyond a density of about 0.93; the infinite-time limit should
of course bep=1.) However the description improves upon
the equilibrium curve and gives the proper shape of the den
sity dependence with an inflection aroumpe=0.87. The
closeness of the flat-measure result and the equilibrium one
(the former being with the constraint that no gaps have a -4
length larger than 1) at high density is illustrated in Fig. 2
where we show the entropy density versus particle density.

In Figure 3 we have displayed on a logarithmic-linear plot  _s L L L L L L
the predicted and computed one-gap distribution functions 0.7 0.8 0.9
for four different densities. The approximation is too small at P
smallh for p=0.75, which is reminiscent of the missing the  FIG. 2. Entropy density vs particle density for a hard-rod sys-
logarithm divergence at the RSA jamming limi§;, =0.747  tem: Edwards entropy for the parking-lot model wherso (full
(see above Otherwise the agreement with the simulation curve and equilibrium entropydashed curve

1 T T T T T T

—

'
W
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&) C % 3
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FIG. 3. Parking-lot model wheK — +: log-linear plot of the
one-gap distribution function s for several densities: from top to
bottom p=0.75,0.85,0.89,0.92. Comparison of simulation data
(wavy line) and flat-measure approximatiofull curve).

FIG. 5. Same as Fig. 4 fgr=0.82.

IV. FINITE TAPPING INTENSITY: K FINITE

librium curve, but even ap=0.82 (Fig. 5), it somewhat When the tapping intensity, i.e.,Kl/ is finite, one must
overestimates the oscillations at large distances. for modify the definition of the stable or “blocked” states. In-
=0.92 (Fig. 6), the difference between the three curves isdeed, for finiteK, the configuration of hard rods obtained
barely visible. Note that for £r<2, the pair distribution after a desorption-adsorption event is no longer characterized
function is equal to the nearest-neighbor distribution funcbY ®=0, and the gaps between particles can be larger than

tion, hence to the one-gap distribution function shown in®ne. One also knows that the tapping intensity ¥ not the
Fig. 3 proper “thermodynamic” parameter to add to the density in

order to characterize the macrostate of the system in a statis-
tical mechanical approach: the memory effect observed ex-

5 — T T ; ; perimentally[8] and reproduced by the present parking-lot
) 7 10 I T I T I T I T I
41 — i
J sk _
3 — i
E T 61 -
) i
&n
4 ]
2 s
0
FIG. 4. Pair distribution function in the parking-lot model when
K—+o at p=0.77: simulation datgwavy curve, flat-measure
approximation(full curve), and equilibrium(dashed curve FIG. 6. Same as Fig. 4 fgr=0.92.
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0.78 T T
| Z(L,N,A)=f dzj dyexpl’L Z(1—p)+yd
T T L rTrTTrTT C CI
T z+ty[l—exp —2)]
+
0.775 7 whereC andC’ denote two closed contours. In the macro-
v scopic limit, N—oo, L—oo, A—oo with p and® fixed, one
e | i rd can again use a saddle-point method to evaluate the integrals,
& T ST / which leads to
Z(L,N,A)=exp Ls(p,P)], (27)
0.77 .
wheres(p,®) is expressed as
"""""" z+y[l—exp —2)
/\ s(p,®)=(1—p)z+yd+pln d n=2)] :
- z(z+y)
> B (28)
0.765 ' ' o _ .
1000 with z=z(p,®) and y=y(p,P) solutions of the two
. coupled equations
FIG. 7. Memory effect in the parking-lot model. The full curve 1-p _ 1 1 1+ye ?
corresponds to a process at constdrt2000 whereas the dashed p T z+y - Zry(l-e 7 ) (29
curve shows the kinetics whef is switched from 2000 to 500 at
ts=1000. The point# andB correspond to states with equal den- -,
sity, equal value ofK =500, but different further evolution. The Ez 1 _ 1-e (30)
inset shows the phenomenon with a larger s¢afgper curve, con- pZty zi+y(l-e 9’

stantK =500; lower curve, constar¢=2000).

o ~ z=(dS/dL)y a can again be considered as the inverse of the
model (see aboveimplies that the system can be found in «compactivity,” but an additional intensive parameter
states, characterized by the same dengitand the same —(y5/9A), , is needed.
tapping intensity I, that however evolve differently under A gouble Legendre transformed potent¥(N,z,y) can
further tapping with the same intensitykt/as illustrated in e introduced as
Fig. 7, the density may increase in one case and decrease in
another. Y(N,z,y)=—Ls(p,®)+zL+yA

If the tapping intensity is not an appropriate thermody-
namic parameter, a natural choice for a two-parameter statis- z+y[l—exp—2)]
tical mechanical description appears to ®e the available z(z+y) '
line fraction, that one can use in conjunction with the density
p. A nonzero® generalizes to a finite tapping intensity, the Then, d(Y)/dz|yy=(L) and d(Y)/dy|y,=(A), and the
prescription uses for vanishingly small intensity, namdly, fluctuations inL andA are given by
=0, and® is also directly relevant for describing the com-

=N|z—1In

(31)

paction kinetics, as shown by E¢l). We thus consider a ) ) P(Y) d(1lp)
statistical mechanical ensemble in which all configurations (L —(L)™=~ 972 TN (32
of nonoverlapping hard rods characterized by fixed values of Ny y
p and® are equally probable.
Denoting byA the total length available for insertion for a ) . Y) d(P/p)
particle center A=®L), the configurational integral with (A= (A=~ ay? =—-N ay ' (33
the constraints of fixed, fixed system sizd., and fixed N2 ‘
number of particleN is given by P2Y)
L LN N (LA)=(L)(A)=— 923y
Z(L,N,A):f T dhiﬁ(L—N—E hi) N
0 0i1=1 i=1 (9((I)/p)
N =N—%
X6 A=, H(hi—l)(hi—l)), (25)
i=1 B d(1lp) (34
which can be rewritten as before as W I,
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By using the saddle-point equations, E¢&9) and (30), 008 "~ T T T Tga LT T T 7T
one arrives at the following expression for the fluctuations of -
p:

, |
Lp2) —(p)2) = (LA —=(L)) 006 H
. £+ 1 1+(2+zty)ye’” SN 14

U\ 2 (z4y)? [zty(l-e H]? ) NY e
(35) §0.04 U

Similar expressions are obtained for the fluctuationd of
and the cross fluctuations @f and ®, but are not shown
here. ;

The gap distribution functions can also derived by follow- ~ 0.02—~ =
ing the same method as in the preceding section. This lead 3

to L 4
1 I 1 I 1 I 1 I 1 I 1 I.' 1
0.6 0.65 0.7 0.75 0.8 0.85 0.9
z(z+
p#eﬂh for h<1 P
z+y(l—e ? . . ) B
Geg(h:p)= FIG. 8. Density fluctuations as a function @ffor K=500. The
edlf,p A . .
2(z+y) Cohviho1 dotted curve corresponds to the equilibrium density fluctuations, the
pme [zbty(h=D1  for h>1, dot-dashed curve to the RSA result, the dashed curve to the two-
z+y(l—e

parameter approximation, and the wavy line to the simulation data
(obtained by averaging 15000 different runs for a system kize

. S . . =400). The i ispl h fi I f
whereas the multigap distribution functions satisfy the fac'denos(i)t)ies @ inset displays the same curves for a larger range o
torization property, e.g., Geg(h,h’;p,®) '

(36)

a factor equal ta@+y [see Eq(36)]. Again, this discrepancy
s larger for densities around of the RSA jamming lirtilie

the exact sum rules, Eq&)—(4). It is also worth pointing two intermediate sets of curves in Fig.)10

out that the results of Sec. IIK(—«) can be recovered by
taking the limity—o in the above equations. Finally, the
pair distribution function can be derived along the same lines V. CONCLUSION
as shown before and in Appendix A, but the calculation is |, i work we have applied the statistical mechanical
thoec:etedlous and not sufficiently insightful to be presentedapproach based on the microcanoni¢éht’ ) measure pro-

A comparison between the two-parameter flat measure — — T T T
and the simulation data is shown in Figs. 8 and 9 for the %%~ (2 I L L LI B
density fluctuations withK =500 andK =5000, respectively. i ]
We have also plotted the equilibrium curvda,(<pz>eq . %
—<p>§q)=p(1—p)2, and the one-dimensional RSA curve
[45] up to py . The predictions are good but not perfect. 0.06
They display the proper nontrivial shape of thedepen-
dence, in contradistinction to the equilibrium curve, but there ~
is a significant underestimation of the fluctuations in the den- &
sity range around the RSA jamming limit. Note that at high X
density the approximation is in very good agreement with theN9 0.04 |-
simulation datgat least fork =500) and does not merge too =
rapidly with the equilibrium curve as seen above for the case
K—o0.

The one-gap distribution functions shown on a log-linear
plot in Fig. 10 illustrate also the overall good agreement  0.02—
between the two-parameter measure predictions and th
simulation data. The approximation captures the change o ..
the slope of the one-gap distribution function that occurs for PR Y U R U R L

3 P T R I TN
“0 02 04 06 08 1
p

h>1; but the curvature seen in the simulation data Hor 06 b6 0F @b 5 G& OFy 02
slightly larger than 1 is not correctly reproduced by the two-
parameter measure which predicts an exponential decay with FIG. 9. Same as Fig. 8 fd¢=5000.
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—f—T— [ & & T & T[T T of tapg and a given protocol for the tapping intensity. We are
] presently working on this problem.

APPENDIX A: PAIR DISTRIBUTION FUNCTION IN THE
CONSTRAINED MICROCANONICAL ENSEMBLE
(K—=) AND AT EQUILIBRIUM

We introduce the probability density(£) of finding
two given particles at a relative distanéesuch that there is
exactly m—1 particles between them; this function can be
expressed in terms of the partition function as

0.1

G(psh)

Z(¢E,m—1)Z(L—&N—m)
Z(L,N) ’

V(€)= (A1)

0.01
whereZ(L,N) can be calculated either with the constrained
microcanonical distribution or at equilibrium.

For largeN, one can use the asymptotic expression of the
partition function Z(L,N)=e*-"Ng(z)N. At equilibrium
¢(z)=1/z whereas with the constrained microcanonical
measure, one ge$(z)=(1—e("?)/z and z given by Eq.

FIG. 10. Parking-lot model whek=500: log-linear plot of the ~ (10). Therefore, the probability density is equal to
one-gap distribution function s for several densities: from top to
bottom in the middle of the figurep=0.682,0,748,0.790,0.83.

0.001

Comparison of simulation datavavy line) and two-parameter ap- V() =2(§,m=1) d}(z)me*z(g* m) (A2)
proximation (full curve). For p=0.83, there is virtually no differ-
ence between the two curves. and, formally, the pair distribution function can be expressed

posed by Edwards and co-workers to the out—of—equilibriumas

situation obtained in the parking-lot model. This latter is a 1=

microscopic off-lattice model that reproduces the major fea- g(r.p)== > W(r). (A3)
tures of the phenomenology of vibrated granular materials. p m=1

In the statistical mechanical description, a macrostate of the,, hard rods, the partition functiah(¢&,m—1) is different
system is characterized by fixed values of two macroscopigqm o for £>m. At equilibrium, one has foE>m
guantities, the particle densigy and the available line frac-

tion ® (or rather fixed values of three extensive parameters: (é&—m)m-1

the number of particles, the system size, and the total length Z(&m-1)= “(m-1) (A4)
available for insertion of particl¢sand all configurations of

nonoverlapping particles with fixed and ® are taken as andz=p/(1—p), which gives for the pair distribution func-

equiprobable. tion [52]

We show that such an approach misses some of the quali- .
tative signatures of the limiting case of a purely irreversible 1 o(r—m)(r—m)™* r-m
adsorption procesRSA) at the jamming limit. However, at ~ Jed(T:P) = Py m§=:l (m—1)l(Up—1)" R T p-1
higher densities, i.e., in the slo@ogarithmig compaction ' (A5)

regime, it gives a good, yet not perfect, quantitative descrip-
tion of many observable quantitiéfuctuation, distribution whenr>1, whereé(x) is the Heaviside function.
functiong. The choice of® as an additional “thermody- In the constrained microcanonical ensemble, the expres-
namic” parameter is able to account for situations, encounsion for Z(¢,m—1), hence fory,(r), involvesm+1 con-
tered in various memory effects, in which macrostates chartributions. For instancey ,(r) is given by
acterized by the same density and the same tapping intensity
can nonetheless be different.

The fact that a “thermodynamic” approach gives a good Wa(r)=[o(r—1)—o(r _2)]1_ o7
description of a model of vibrated granular media is promis-
ing. In the one-dimensional model studied here, the generaMore generally
ized “equation of state” associated with the compactivity-

e 2= (AB)

based microcanonical distribution can be analytically derived o K ‘ " 2(r—m)
so that one can make theoretical predictions concerning, e.g.,‘/’m(r) = k§=:o Con(=1)*0(r—m—k) 1—e 2 € '
the density fluctuations or the structure of the configurations. (A7)
However, one still faces the task of predicting the state of the

system for a given preparation, i.e., for a given timamber Inserting Eqg. (A7) into Eq. (A3) yields Eqg. (18).
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APPENDIX B: RSA EXPRESSIONS AT THE JAMMING
LIMIT
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with

For the one-dimensional RSA process, the one-gap distri-

bution function at the jamming limitt(~) is given by
[42,43

2J dttk(t)%eC"™  for h<1
0

G(h;py)= (B1)

0 for h>1,

k(t)=exp( — f;l—ue‘ du).

with

(B2)

The pair distribution function can be expressed in a closed

form by using the Laplace transform g(s,t)
=[g“dl e Slg(l+1t). At the jamming limit, one haf45]
- 1[ = Kk(tp)k(t;+s)]?
s, =—|= dt;—————
g( pJL) ng S|:j 1 k(S)
wa t k(tl)k(tl+s)ft1 t k(tz)k(tz‘f's)
o = k(s o 2 k(s
x f ‘24,8 KA B(s,t )) (B3)
—B(s, .
0 CK(tg+s)

1—e" (s+t)

1
B(s,t)= — —

s+t (B4)

(s+1)2

The expression for the density fluctuations follows from the

above equation by taking the lim#—0 of the expression
p(1+2p[9(s,py.)e S—1/s]) [45]. This gives

L((Pz> _<P>2) =pPJL

4 (e )
_1+2pJL__f dt;k*(ty)
pJo

ty to
xf dtzkz(tz)f dtze '3k~ 2(ts)
0 0

=)
X| —— =0.038. (B5)

2
ts t5

At the same density;, , the equilibrium value s ({p?)
—(p)?)eq=0.0476.
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